Activated CD47 promotes pulmonary arterial hypertension through targeting caveolin-1.
نویسندگان
چکیده
AIMS Pulmonary arterial hypertension (PAH) is a progressive lung disease characterized by pulmonary vasoconstriction and vascular remodelling, leading to increased pulmonary vascular resistance and right heart failure. Loss of nitric oxide (NO) signalling and increased endothelial nitric oxide synthase (eNOS)-derived oxidative stress are central to the pathogenesis of PAH, yet the mechanisms involved remain incompletely determined. In this study, we investigated the role activated CD47 plays in promoting PAH. METHODS AND RESULTS We report high-level expression of thrombospondin-1 (TSP1) and CD47 in the lungs of human subjects with PAH and increased expression of TSP1 and activated CD47 in experimental models of PAH, a finding matched in hypoxic human and murine pulmonary endothelial cells. In pulmonary endothelial cells CD47 constitutively associates with caveolin-1 (Cav-1). Conversely, in hypoxic animals and cell cultures activation of CD47 by TSP1 disrupts this constitutive interaction, promoting eNOS-dependent superoxide production, oxidative stress, and PAH. Hypoxic TSP1 null mice developed less right ventricular pressure and hypertrophy and markedly less arteriole muscularization compared with wild-type animals. Further, therapeutic blockade of CD47 activation in hypoxic pulmonary artery endothelial cells upregulated Cav-1, increased Cav-1CD47 co-association, decreased eNOS-derived superoxide, and protected animals from developing PAH. CONCLUSION Activated CD47 is upregulated in experimental and human PAH and promotes disease by limiting Cav-1 inhibition of dysregulated eNOS.
منابع مشابه
TSP1-CD47 signaling is upregulated in clinical pulmonary hypertension and contributes to pulmonary arterial vasculopathy and dysfunction.
AIMS Thrombospondin-1 (TSP1) is a ligand for CD47 and TSP1-/- mice are protected from pulmonary hypertension (PH). We hypothesized the TSP1-CD47 axis is upregulated in human PH and promotes pulmonary arterial vasculopathy. METHODS AND RESULTS We analyzed the molecular signature and functional response of lung tissue and distal pulmonary arteries (PAs) from individuals with (n = 23) and withou...
متن کاملPersistent eNOS activation secondary to caveolin-1 deficiency induces pulmonary hypertension in mice and humans through PKG nitration.
Pulmonary hypertension (PH) is an unremitting disease defined by a progressive increase in pulmonary vascular resistance leading to right-sided heart failure. Using mice with genetic deletions of caveolin 1 (Cav1) and eNOS (Nos3), we demonstrate here that chronic eNOS activation secondary to loss of caveolin-1 can lead to PH. Consistent with a role for eNOS in the pathogenesis of PH, the pulmon...
متن کاملThe C-terminal domain of caveolin-1 and pulmonary arterial hypertension: An emerging relationship
Pulmonary Arterial Hypertension (PAH) is a rare disease that affects the vasculature in the lungs. Currently, there is no cure for PAH, and there appears to be no clear causal factors for the disease. Recently, through whole exome sequencing, caveolin-1, a critical component of cell surface invaginations called caveolae, has been identified as a key protein in the progression of PAH. Specifical...
متن کاملMURC deficiency in smooth muscle attenuates pulmonary hypertension
Emerging evidence suggests that caveolin-1 (Cav1) is associated with pulmonary arterial hypertension. MURC (also called Cavin-4) is a member of the cavin family, which regulates caveolar formation and functions together with caveolins. Here, we show that hypoxia increased Murc mRNA expression in the mouse lung, and that Murc-null mice exhibited attenuation of hypoxia-induced pulmonary hypertens...
متن کاملElafin Reverses Pulmonary Hypertension via Caveolin-1-Dependent Bone Morphogenetic Protein Signaling.
RATIONALE Pulmonary arterial hypertension is characterized by endothelial dysfunction, impaired bone morphogenetic protein receptor 2 (BMPR2) signaling, and increased elastase activity. Synthetic elastase inhibitors reverse experimental pulmonary hypertension but cause hepatotoxicity in clinical studies. The endogenous elastase inhibitor elafin attenuates hypoxic pulmonary hypertension in mice,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular research
دوره 93 4 شماره
صفحات -
تاریخ انتشار 2012